\(\int \frac {\cos ^{\frac {3}{2}}(a+b \log (c x^n))}{x} \, dx\) [113]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 63 \[ \int \frac {\cos ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} \left (a+b \log \left (c x^n\right )\right ),2\right )}{3 b n}+\frac {2 \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )} \sin \left (a+b \log \left (c x^n\right )\right )}{3 b n} \]

[Out]

2/3*(cos(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)/cos(1/2*a+1/2*b*ln(c*x^n))*EllipticF(sin(1/2*a+1/2*b*ln(c*x^n)),2^(1/
2))/b/n+2/3*sin(a+b*ln(c*x^n))*cos(a+b*ln(c*x^n))^(1/2)/b/n

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {2715, 2720} \[ \int \frac {\cos ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} \left (a+b \log \left (c x^n\right )\right ),2\right )}{3 b n}+\frac {2 \sin \left (a+b \log \left (c x^n\right )\right ) \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )}}{3 b n} \]

[In]

Int[Cos[a + b*Log[c*x^n]]^(3/2)/x,x]

[Out]

(2*EllipticF[(a + b*Log[c*x^n])/2, 2])/(3*b*n) + (2*Sqrt[Cos[a + b*Log[c*x^n]]]*Sin[a + b*Log[c*x^n]])/(3*b*n)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \cos ^{\frac {3}{2}}(a+b x) \, dx,x,\log \left (c x^n\right )\right )}{n} \\ & = \frac {2 \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )} \sin \left (a+b \log \left (c x^n\right )\right )}{3 b n}+\frac {\text {Subst}\left (\int \frac {1}{\sqrt {\cos (a+b x)}} \, dx,x,\log \left (c x^n\right )\right )}{3 n} \\ & = \frac {2 \operatorname {EllipticF}\left (\frac {1}{2} \left (a+b \log \left (c x^n\right )\right ),2\right )}{3 b n}+\frac {2 \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )} \sin \left (a+b \log \left (c x^n\right )\right )}{3 b n} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.86 \[ \int \frac {\cos ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {2 \left (\operatorname {EllipticF}\left (\frac {1}{2} \left (a+b \log \left (c x^n\right )\right ),2\right )+\sqrt {\cos \left (a+b \log \left (c x^n\right )\right )} \sin \left (a+b \log \left (c x^n\right )\right )\right )}{3 b n} \]

[In]

Integrate[Cos[a + b*Log[c*x^n]]^(3/2)/x,x]

[Out]

(2*(EllipticF[(a + b*Log[c*x^n])/2, 2] + Sqrt[Cos[a + b*Log[c*x^n]]]*Sin[a + b*Log[c*x^n]]))/(3*b*n)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(246\) vs. \(2(93)=186\).

Time = 3.56 (sec) , antiderivative size = 247, normalized size of antiderivative = 3.92

method result size
derivativedivides \(-\frac {2 \sqrt {\left (2 {\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1\right ) {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \left (4 \cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}-2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2} \cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (a +2 b \ln \left (\sqrt {c \,x^{n}}\right )\right )}{2}}\, \sqrt {-1+2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )\right )}{3 n \sqrt {-2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}+{\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) \sqrt {2 {\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1}\, b}\) \(247\)
default \(-\frac {2 \sqrt {\left (2 {\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1\right ) {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \left (4 \cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}-2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2} \cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (a +2 b \ln \left (\sqrt {c \,x^{n}}\right )\right )}{2}}\, \sqrt {-1+2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )\right )}{3 n \sqrt {-2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}+{\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) \sqrt {2 {\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1}\, b}\) \(247\)

[In]

int(cos(a+b*ln(c*x^n))^(3/2)/x,x,method=_RETURNVERBOSE)

[Out]

-2/3/n*((2*cos(1/2*a+1/2*b*ln(c*x^n))^2-1)*sin(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*(4*cos(1/2*a+1/2*b*ln(c*x^n))*s
in(1/2*a+1/2*b*ln(c*x^n))^4-2*sin(1/2*a+1/2*b*ln(c*x^n))^2*cos(1/2*a+1/2*b*ln(c*x^n))+(sin(1/2*a+1/2*b*ln(c*x^
n))^2)^(1/2)*(-1+2*sin(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*EllipticF(cos(1/2*a+1/2*b*ln(c*x^n)),2^(1/2)))/(-2*sin(
1/2*a+1/2*b*ln(c*x^n))^4+sin(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)/sin(1/2*a+1/2*b*ln(c*x^n))/(2*cos(1/2*a+1/2*b*ln(
c*x^n))^2-1)^(1/2)/b

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.70 \[ \int \frac {\cos ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {2 \, \sqrt {\cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )} \sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) - i \, \sqrt {2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + i \, \sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right ) + i \, \sqrt {2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) - i \, \sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )}{3 \, b n} \]

[In]

integrate(cos(a+b*log(c*x^n))^(3/2)/x,x, algorithm="fricas")

[Out]

1/3*(2*sqrt(cos(b*n*log(x) + b*log(c) + a))*sin(b*n*log(x) + b*log(c) + a) - I*sqrt(2)*weierstrassPInverse(-4,
 0, cos(b*n*log(x) + b*log(c) + a) + I*sin(b*n*log(x) + b*log(c) + a)) + I*sqrt(2)*weierstrassPInverse(-4, 0,
cos(b*n*log(x) + b*log(c) + a) - I*sin(b*n*log(x) + b*log(c) + a)))/(b*n)

Sympy [F]

\[ \int \frac {\cos ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int \frac {\cos ^{\frac {3}{2}}{\left (a + b \log {\left (c x^{n} \right )} \right )}}{x}\, dx \]

[In]

integrate(cos(a+b*ln(c*x**n))**(3/2)/x,x)

[Out]

Integral(cos(a + b*log(c*x**n))**(3/2)/x, x)

Maxima [F]

\[ \int \frac {\cos ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int { \frac {\cos \left (b \log \left (c x^{n}\right ) + a\right )^{\frac {3}{2}}}{x} \,d x } \]

[In]

integrate(cos(a+b*log(c*x^n))^(3/2)/x,x, algorithm="maxima")

[Out]

integrate(cos(b*log(c*x^n) + a)^(3/2)/x, x)

Giac [F]

\[ \int \frac {\cos ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int { \frac {\cos \left (b \log \left (c x^{n}\right ) + a\right )^{\frac {3}{2}}}{x} \,d x } \]

[In]

integrate(cos(a+b*log(c*x^n))^(3/2)/x,x, algorithm="giac")

[Out]

integrate(cos(b*log(c*x^n) + a)^(3/2)/x, x)

Mupad [B] (verification not implemented)

Time = 26.50 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.89 \[ \int \frac {\cos ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {2\,\mathrm {F}\left (\frac {a}{2}+\frac {b\,\ln \left (c\,x^n\right )}{2}\middle |2\right )}{3\,b\,n}+\frac {2\,\sqrt {\cos \left (a+b\,\ln \left (c\,x^n\right )\right )}\,\sin \left (a+b\,\ln \left (c\,x^n\right )\right )}{3\,b\,n} \]

[In]

int(cos(a + b*log(c*x^n))^(3/2)/x,x)

[Out]

(2*ellipticF(a/2 + (b*log(c*x^n))/2, 2))/(3*b*n) + (2*cos(a + b*log(c*x^n))^(1/2)*sin(a + b*log(c*x^n)))/(3*b*
n)